
Building a Mobile Game: with PyGame and PyDroid
By Paul Moggridge (p.moggridge@herts.ac.uk)

1 Task

In this activity, you will develop your Python coding skills by creating a Python mobile game. By
end of this activity you will have considered the design implications of building a mobile game and
have developed a small mobile-friendly game using PyGame.

(a) An oven (b) A knife (c) A table

(d) A potato (e) A cooked potato (f) A burnt potato

(g) Wedges (h) Cooked wedges (i) Burnt wedges

Figure 1: Sprites (images) for your game. You can use these images or draw your own (making
sure you use a transparent background) or chose your own from a website such as Flaticon.

2 Learning Objectives

• Knowledge of the basic structures in a real-time graphical game.

• Knowledge of some of PyGame’s important functions.

• Knowledge of the design considerations for building a mobile game.

• Be able to apply your Python programming knowledge to build mobile 2D graphical game.

3 Setup

This activity sheet assumes you have successfully installed Python 3 (including Python Pip) and
an Integrated Development Environment (IDE) such as Visual Studio Code.

In your terminal, in Visual Studio Code (Terminal > New Terminal). Do one of the following:

Option 1 (simplest, least storage used, beginner friendly): Simply execute pip install pygame

this will install the PyGame module into your base environment.

Option 2: (best practice, advanced users): Create and use a python virtual environment for
PyGame. In your user/home directory run mkdir pyvenvs, then: cd pyvenvs then: python {m

venv pygame-venv and activate it (on Linux: Source pygame-venv/bin/activate on Windows:
C:\Users\YourUsername\pyvenvs\pygame-venv\Scripts\activate) (don’t forget you can use
the tab to auto-complete!).

1

If you skip this step, you won’t be able to run the game, and will receive an ModuleNotFound

error when trying to run the game on your computer.

4 Download Game Files

Create folder for the game “potatochef”. Then copy or download the code in the below Figure
into new files “main.py” and “potatochef.py”.

Download the code and resources here: Game Files

5 Optional Setup (for fun)

You can develop and play the game on your computer, but if you have a android device you may
be play this game on your phone too!

On the Play store download “PyDriod” app. This is an Integrated Development Environment
(IDE) and Python environment all-in-one, it is great for running Python programs, that have been
written on your computer, or even on the app itself, on the go.

When you have completed this activity sheet, copy the game files to your phone and open
PyDroid. Locate the files and open “main.py”. Press the play button and your game should run.

Speaking from experience, testing this with several models of Android phone, most of the time
it works fine and runs exceedingly well. However, some models (especially newer models) have
tighten security around apps accessing files, and may block your code from loading the image icons.

6 Challenges

1. Find TODO 1 and change the background colour to a colour of your choosing.

2. Find TODO 2 and replace the code adding two potatoes, with a loop which adds six potatoes.

3. Find TODO 3a/b/c/d/e/f/g/h/i/j/k/l/m and add a cutting area (knife sprite) which chops
the potatoes into wedges. Wedges can be dragged to oven and cooked.

4. Find TODO 4a/b/c/d/e and add scoring mechanism. For example: serving a raw potato to
the table is worth -£5, serving a cooked potato is worth £7, serving a cooked wedges is worth
£10... so on. The score is accumulated and displayed to the player on screen.

7 Advanced Challenge

“Googling”1 for solutions to errors and bugs in your code in common practice. But another common
practice in coding is “Googling” for pieces “boilerplate” code. The term “boilerplate” is used to
describe code that is commonly implemented. Many good websites and communities exist to help
programmers, but one of the biggest is StackOverflow. Take a look at https://stackoverflow.
com/questions/30720665/countdown-timer-in-pygame and see how the community members
have implemented a timer in PyGame. Integrate their solution into your code. Make the game
end once your 20 second timer has expired and display a game over message. Use a comment to
credit the post for the code you copied.

1Other search engines are available!

2

https://herts365-my.sharepoint.com/:u:/g/personal/pm13abs_herts_ac_uk/EYFvseslzwtNp9p_Z1tIHAkBWtjl0zGBtf9ejizGPP-9FQ?e=oeWWFs
https://stackoverflow.com/questions/30720665/countdown-timer-in-pygame
https://stackoverflow.com/questions/30720665/countdown-timer-in-pygame

8 Further Suggestions

You could extend this game with more potatoes recipes or indeed include other foods and prepare
more complex dishes.

Another fairly easy suggestion is adding a high-score feature. The game could store store the
high-est scores in a text file and display them on the game over screen.

One of inspirations for this was “Overcooked”, a time pressured cooking game, and one of the
concepts this game, is that certain meals are being ordered and you must make requested dish.
This feature could be added to this game to enhance the complexity of the game play.

One way in which the quality of the software could be improved would be added error handling
on image loading. Use a try block to catch errors thrown if the images cannot be found and take
action in the except block to handle the issue. (Simplest) You could display message on screen
which explains that the images could not be loaded. (Advanced) You could embed the lower qual-
ity versions images directly into the script (for example, base64 encoded) or draw some images in
code (for example, pillow library), to recover from the images not loading.

9 Code

Figure 2: main.py - available for download:

import pygame

from potatochef import PotatoChef

def main():

Initialise pygame

pygame.init()

screen = pygame.display.set_mode((600,800)) # on mobile this size is ignored

pygame.display.set_caption(’Potato Chef (version 1.0.0.1)’)

fps_clock = pygame.time.Clock()

In PyDroid on Android the display size we set above is ignored

screen_rect = screen.get_rect()

initialise game object

game = PotatoChef(screen_rect.w, screen_rect.h)

game.load_images()

game.new_game()

font for on screen text

TODO: 4d - load a font for the on screen text

Is a potato being dragged?

touched = False

running = True

while running:

Check pygame events

for event in pygame.event.get():

if event.type == pygame.QUIT:

set value which escapes this game loop

running = False

3

elif event.type == pygame.MOUSEBUTTONDOWN:

Checking each potato for if they are being dragged

for potato in game.potato_group:

if potato.rect.collidepoint(event.pos):

record which potato is being dragged

dragged = potato

touched = True

pygame.mouse.get_rel()

elif event.type == pygame.MOUSEBUTTONUP:

touched = False

dragged potato follows mouse

if touched:

dragged.rect.move_ip(pygame.mouse.get_rel())

dragged.rect.clamp_ip(screen_rect)

set background colour

screen.fill((80,80,80)) # TODO: 1 - Change the background colour.

update the game state

game.update()

draw game object in the correct order, potatoes ontop of oven, so potatoes second

game.oven_group.draw(screen)

TODO: 3e - draw the knife you created in 3d

game.table_group.draw(screen)

game.potato_group.draw(screen)

draw text

TODO: 4e - render and display the text onto the screen.

display update

pygame.display.update()

fps_clock.tick(30)

Entry point

if __name__ == ’__main__’:

main()

Figure 3: potatochef.py

import pygame

import random

from enum import Enum

class PotatoChef:

def __init__(self, sx, sy):

self.sx = sx

self.sy = sy

self.image_xy_size = self.sx // 12 # all images are square and equally sized for

simplicity of this game

TODO: 4a - create variable to store the score.

def load_images(self):

self.potato_img = pygame.transform.scale(pygame.image.load(’res/potato.png’),

(self.image_xy_size, self.image_xy_size))

self.potato_img_cooked =

pygame.transform.scale(pygame.image.load(’res/potato_cooked.png’),

4

(self.image_xy_size, self.image_xy_size))

self.potato_img_burnt =

pygame.transform.scale(pygame.image.load(’res/potato_burnt.png’),

(self.image_xy_size, self.image_xy_size))

TODO: 3f - Load the wedges images.

self.oven_img = pygame.transform.scale(pygame.image.load(’res/oven.png’),

(self.image_xy_size*2, self.image_xy_size*2))

TODO: 3b - Load the knife on a chopping board image.

self.table_img = pygame.transform.scale(pygame.image.load(’res/table.png’),

(self.image_xy_size*4, self.image_xy_size*4))

def new_game(self):

self.oven_group = self._make_oven()

TODO: 3d - Create sprite group, using function 3c

self.table_group = self._make_table()

self.potato_group = self._make_potatoes()

Updates game state

def update(self):

check each potato for colisions..

for potato in self.potato_group:

if potato.collide(self.oven_group):

print("COOKING" + random.randint(1,5)*’!’) # for easy debugging

TODO: 3m - check for collision with the knife group...

...like above print a message so that you can see when the collision is

happening.

if potato.collide(self.table_group):

print("!!!!\tYUM\t!!!!") # for easy debugging

TODO: 4c - Add the value of the potato (from 4b) to the score.

Update potatoes, calls all potatoes update functions

self.potato_group.update()

def _make_oven(self):

oven_group = pygame.sprite.Group()

oven_group.add(Oven((self.sx/3) * 2, self.sy/3, self.oven_img))

return oven_group

TODO: 3c create a function, which returns a sprite group containing the knife

sprite.

def _make_table(self):

table_group = pygame.sprite.Group()

table_group.add(Table(self.sx/2, (self.sy/4) * 3, self.table_img))

return table_group

def _make_potatoes(self):

potato_group = pygame.sprite.Group()

TODO: 2 - Use a loop to create potatoes, instead of the below two lines.

potato_group.add(Potato(50, 100, self.potato_img, self.potato_img_cooked,

self.potato_img_burnt))

potato_group.add(Potato(50, 150, self.potato_img, self.potato_img_cooked,

self.potato_img_burnt))

return potato_group

class PotatoState(Enum):

RAW = 1

COOKED = 2

BURNT = 3

RAW_WEDGES = 4

5

COOKED_WEDGES = 5

BURNT_WEDGES = 6

class Potato(pygame.sprite.Sprite):

TODO: 3g (part 1) - Ask for the wedges images as parameters to the potato class.

TODO: 3g (part 2) - You will also need to update the _make_potatoes function to

provide the wedges images.

def __init__(self, x, y, img, img_cooked, img_burnt):

super().__init__()

self.image = img

self.potato_img = img

self.img_cooked = img_cooked

self.img_burnt = img_burnt

TODO: 3f - store the wedges images you provided as paramters into object

variables

self.rect = self.image.get_rect()

self.rect.center = (x, y)

self.cooked = 0

TODO: 3g - add variable to store how chopped this potato is.

timings

TODO: 3h - add a variable to represent how long it takes to chop.

self.cook_time = 300

TODO: 3i - add a variable to represent how long it takes to cook wedges.

self.burn_time = 50

def calculate_state(self):

TODO: 3j - update this if statment to return the correct...

...state for different chopped and cooked values. See the potato state enum.

if self.cooked > (self.cook_time + self.burn_time):

return PotatoState.BURNT

elif self.cooked > self.cook_time:

return PotatoState.COOKED

else:

return PotatoState.RAW

TODO: 4b - write function which calculates the value of serving this potato, based

on this state

def update(self):

Update inage to match state

state = self.calculate_state()

if state == PotatoState.RAW:

self.image = self.potato_img

elif state == PotatoState.COOKED:

self.image = self.img_cooked

elif state == PotatoState.BURNT:

self.image = self.img_burnt

TODO: 3k - update the image variable (which is one displayed), based on the

state.

else:

self.image = self.potato_img

def collide(self, spriteGroup):

if pygame.sprite.spritecollide(self, spriteGroup, False):

Which sprite did it collide with?

if isinstance(spriteGroup.sprites()[0], Oven):

self.cooked = self.cooked + 1

TODO: 3l - If there a collision is with a Knife increment chopped variable

from 3g

6

if isinstance(spriteGroup.sprites()[0], Table):

self.kill()

return True

return False

class Oven(pygame.sprite.Sprite):

def __init__(self, x, y, img):

super().__init__()

self.image = img

self.rect = self.image.get_rect()

self.rect.center = (x, y)

TODO: 3a - Add a class for Knife

class Table(pygame.sprite.Sprite):

def __init__(self, x, y, img):

super().__init__()

self.image = img

self.rect = self.image.get_rect()

self.rect.center = (x, y)

10 Image Credit

• Potato - created by AomAm - Flaticon

• Oven - created by Freepik - Flaticon

• Knife - created by Freepik - Flaticon

• Table - created by Freepik - Flaticon

Icons free for personal and commercial use with attribution.

7

	Task
	Learning Objectives
	Setup
	Download Game Files
	Optional Setup (for fun)
	Challenges
	Advanced Challenge
	Further Suggestions
	Code
	Image Credit

